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Abstract
The structure of the Euler–Lagrange equations for a general Lagrangian theory
(e.g. singular, with higher derivatives) is studied. For these equations we present
a reduction procedure to the so-called canonical form. In the canonical form
the equations are solved with respect to highest-order derivatives of nongauge
coordinates, whereas gauge coordinates and their derivatives enter the right-
hand sides of the equations as arbitrary functions of time. The reduction
procedure reveals constraints in the Lagrangian formulation of singular systems
and, in that respect, is similar to the Dirac procedure in the Hamiltonian
formulation. Moreover, the reduction procedure allows one to reveal the gauge
identities between the Euler–Lagrange equations. Thus, a constructive way of
finding all the gauge generators within the Lagrangian formulation is presented.
At the same time, it is proved that for local theories all the gauge generators
are local in time operators.

PACS numbers: 03.70.+k, 11.10.Ef, 11.15.−q

1. Introduction

At present increasingly complicated gauge models are used in field and string theories.
Generally a comprehensive analysis of their structure is not a simple task. In the Lagrangian
formulation the problem includes, in particular, finding generators of gauge symmetries and
their algebra, revealing the hidden structure of the equations of motion and so on. One
ought to say that in the Hamiltonian formulation there exists a relatively well-developed
scheme of constraint finding (Dirac procedure [1]) and reorganization [1–4]. The constraint
structure can be, in principle, related to the symmetry properties of the initial gauge theory
in the Lagrangian formulation [5]. However, in the general case, this relation cannot be
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considered as a constructive method of studying the Lagrangian symmetries (it is indirect and
complicated). Moreover, the modern tendency is to avoid the non-covariant Hamiltonization
step and to use the Lagrangian quantization [6] for constructing quantum theory. Such an
approach incorporates all the Lagrangian structures (in particular, the total gauge algebra).
That is why it seems important to develop a reduction procedure within the Lagrangian
formulation—in a sense similar to the Dirac procedure in the Hamiltonian formulation—that
may allow one to reveal the hidden structure of the Euler–Lagrange equations (ELE) of motion
in a constructive manner and to find all the gauge identities and therefore the generators of all
the gauge transformations. An idea of such a procedure was first mentioned in publications
of the authors (DG and IT) [7, 8] (see also appendix C in [2]), but was not appropriately
elaborated and some important points were not revealed.

In the present paper we return to this idea studying the structure of the ELE for a general
Lagrangian theory (singular, with higher derivatives, and with external fields). In section 2
we introduce some notation and definitions. In section 3, we reduce the ELE of nonsingular
theories to the so-called canonical form (in the canonical form the equations are solved with
respect to highest-order derivatives of nongauge coordinates, whereas gauge coordinates and
their derivatives enter the right-hand sides of the equations as arbitrary functions of time, see
below). In section 4 we formulate the reduction procedure for the singular case. In a sense,
the reduction procedure reveals constraints in the Lagrangian formulation of singular systems
and, in that respect, is similar to the Dirac procedure in the Hamiltonian formulation. In
section 5 we demonstrate how the reduction procedure reveals the gauge identities between
the ELE. Thus, a constructive way of finding all the gauge generators within the Lagrangian
formulation is presented. At the same time it is proved that for local theories all the gauge
generators are local in time operators. In the appendix we collect some lemmas that are useful
for our consideration.

2. General ELE

2.1. Notation, definitions and conventions

We consider a system with finite degrees of freedom (classical mechanics). These degrees of
freedom are described by the generalized coordinates qa, a = 1, . . . , n, which depend on the
time t . The following notation is used:

q̇a = dqa

dt
q̈a = d2qa

dt2
. . . or qa[l] = dlqa

dt l

l = 0, 1, . . . (qa[0] = qa). (1)

The coordinates qa = qa[0] are sometimes called velocities of zeroth order; the velocities
q̇a = qa[1] are called velocities of first order; the accelerations q̈a = qa[2] are called velocities
of second order and so on. The space of all the velocities is often called the jet space, see [9].

As local functions (LF) we call those functions that are defined on the jet space and depend
on the velocities qa[l] up to some finite ordersNa � 0 (l � Na). Further, we call Na the order
of the coordinate qa in the LF. For the LF we use the following notation4:

F(qa, q̇a, q̈a, . . .) = F(qa[0], qa[1], qa[2], . . .) = F(q [l]) q [l] = (qa[l], 0 � l � Na)

or sometimes : F(q [l]) = F(· · · qa[Na]). (2)

In the latter form, we indicate only the highest-order derivatives in the arguments of the LF.

4 The functions F may depend on time explicitly, however, we do not include t in the arguments of the functions.
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The following notation is often used: [a] is the number of the indices a, namely, if
a = 1, . . . , n, then [a] = n. Similarly, suppose Fa(η), a = 1, . . . , n, are some functions, then
[F ] is the number of these functions, [F ] = n, etc. However, differently, writing qa[l] we
denote by [l] the order of the time derivatives, see (1).

On the jet space, we define local operators (LO) to be matrix operators Û of the form

ÛAa =
K∑
k=0

ukAa

(
d

dt

)k
(3)

where K is a finite number and ukAa are some LF. The LO act on columns of LF fa producing
columns of LF FA = ÛAafa as well. We define the transposed operator to Û as

(ÛT )aA =
K∑
k=0

(
− d

dt

)k
ukAa =

K∑
k=0

(−1)k
k∑
l=0

(
k

l

)
u
k[l]
Aa

(
d

dt

)k−l
. (4)

Then the following relation holds true:

FAÛAafa = [(ÛT )aAFA]fa +
d

dt
Q (5)

where FA, fa and Q are LF. The LO Û ab is symmetric (+) or skewsymmetric (−) whenever
the relation (ÛT )ab = ±Ûab holds true.

Suppose a set of LF FA
( · · · qa[NA

a ]
)
, or a set of equations FA

( · · · qa[NA
a ]
) = 0, are given.

In the general case the orders NA
a of the coordinates qa in the functions FA (in the equations

FA = 0) are different, i.e. these orders depend both on a and A. The number Na = maxA NA
a

is called the order of the coordinate qa in the set of the functionsFA (in the set of the equations
FA = 0).

When a subset FA′ = 0, A′ ⊂ A has orders N ′
a of the coordinates less than the

corresponding orders of the complete set, namely, ∀a : N ′
a < Na , we call this subset the

constraint equations.
Generally two sets of equations, FA(q [l]) = 0 and fα(q [l]) = 0 are equivalent whenever

they have the same set of solutions. In what follows we denote this fact as F = 0 ⇐⇒ f = 0.
Suppose that two sets of LF FA(q [l]) and χA(q [l]), [F ] = [χ], are related by some LO,

F = Ûχ χ = V̂ F Û V̂ = 1. (6)

Then we call such functions equivalent and denote this fact as F ∼ χ . Obviously,

F ∼ χ �⇒ F = 0 ⇐⇒ χ = 0. (7)

If (7) holds true, we will call the equations FA = 0 and fα = 0 strong equivalent.
In what follows we often come across the case where

χA =
(
fα

0G

)
A = (α,G) ∀G : 0G ≡ 0. (8)

Here the equivalence F ∼ χ implies the equivalence of the equations F = 0 and f = 0 and
the existence of the identities V̂GAFA ≡ 0. Namely,

F ∼ χ �⇒
{
F = 0 ⇐⇒ f = 0
V̂GAFA ≡ 0.

(9)
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2.2. ELE

In this section we restrict our consideration to the Lagrange functions L that are LF on the
jet space, and depend on some external coordinates (fields) uµ (we call the coordinates uµ

external ones in contrast to the coordinates qa, which we call inner coordinates) which are
some given functions of time. Thus,

L = L(· · · qa[Na]; uµ) a = 1, . . . , n Na � 0. (10)

The orders Na of the inner coordinates qa in the Lagrange function will be further called the
proper orders of the coordinates. We call the coordinates qa with the proper orders Na = 0,
the degenerate coordinates [10].

Equations of motion of a Lagrangian theory (the ELE) follow from the action principle
δS = 0, S = ∫

L dt , and have the form (merely the inner coordinates have to be varied):

δS

δqa
=

Na∑
l=0

(
− d

dt

)l
∂L

∂qa[l]
= 0 a = 1, . . . , n. (11)

Following [10], we classify the Lagrangian theories as nonsingular (M 	= 0) and singular
(M = 0) ones with the help of the generalized Hessian M = det ‖Mab‖, where

Mab = ∂2L

∂qa[Na]∂qb[Nb]
(12)

is the generalized Hessian matrix.
In what follows the ELE of a nonsingular (singular) theory will be called the nonsingular

(singular) ELE.
Sometimes, it is convenient to enumerate the inner coordinates and organize them

into groups such that qa = (qa0, . . . , qaI ), where ai are groups of indices that enumerate
coordinates having the same proper orders,Nak = nk . Besides, we organize these groups such
that nI > nI−1 > · · · > n0 = 0 (maxNa = NaI = nI , and qa0 are the degenerate coordinates,
Na0 = n0 = 0). Thus,

a = (ak, k = 0, 1, . . . , I ) [a] =
∑
i

[ai] [ai] � 0 nI > nI−1 > · · · > n0 = 0.

(13)

Taking into account the notation (13), we may write the Lagrange function and the ELE as

L = L (· · · qak[nk]; uµ) k = 0, 1, . . . , I (14)

Fak (· · · qb[Nb+nk]; · · · uµ[nk]) = 0 (15)

Fak =
{
Makbq

b[Nb+nk] +Kak (· · · qb[Nb+nk−1]; · · ·uµ[nk]) k = 1, . . . , I

Ma0(· · · qb[Nb]; uµ) = ∂L/∂qa0 .
(16)

Here Makb is the generalized Hessian matrix and Kak and Ma0 are some LF of the indicated
arguments.

Consider the orders of the inner coordinates in the complete set of the ELE. These orders
are Na = Na + nI . One can see that these orders are, in fact, defined by a subset of (15) with
k = I. In any subset of equations (15) with k < I the orders of the coordinates are less than
those in the complete set. Then according to the above definition, all the ELE with k < I are
constraints. The set (15) has the following specific structure: in each equation of the complete
set the order of a coordinate qa is the sum of the proper order Na and of the order nk . The
latter is the same for all the coordinates and depends only on the number ak of the equation.
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2.3. Canonical form

Let a set of equations

FA(· · · qa[Na]) = 0 (17)

be given. Suppose that these equations can be transformed to the following equivalent form:

qα[lα] = ϕα(· · · qα[lα−1]; · · · qg[lg ]) qa = (qα, qg) a = (α, g) la � Na. (18)

Equation (18) presents the canonical form of the initial set (17). In the canonical form the
equations are solved with respect to the highest-order time derivatives qα[lα] of the coordinates
qα. The coordinates qg (if they exist) and their derivatives qg[lg ] enter the set (18) as arbitrary
functions of time. In fact, there are no equations for these coordinates. In what follows we
call these coordinates the gauge coordinates whereas we call qα the nongauge coordinates.
The orders of the coordinates in the canonical forms may be less than those in the initial set.
In the general case, the same set of equations can have different canonical forms. Generally
there are many canonical forms of the same set of equations.

Below, we are going to formulate a general procedure of reducing the ELE to the canonical
form (in what follows it is called the reduction procedure). Our consideration is always local
in the vicinity of a given consideration point qa[l]

0 (in the jet space), which is on shell w.r.t.
the ELE. We consider theories and coordinates where the consideration point could be selected
as zero point. Thus, we suppose that the zero point is on shell. Further we always suppose that
the ranks of the encountered Jacobi matrices5 are constant in the vicinity of the consideration
point. We call such suppositions ‘suppositions of the ranks’. Stating that some suppositions
hold true in the consideration point, we always suppose that they hold true in the vicinity of
the consideration point. In the course of the reduction procedure we perform several typical
transformations with LF or with the corresponding equations. Each such transformation leads
to equivalent sets of equations or to equivalent sets of LF (definitions of such equivalences are
given above). The proof of these equivalences is based on two lemmas which are presented in
the appendix. Any statement of the form ‘the following equivalence holds true’ can be easily
justified by these lemmas.

3. Canonical form of nonsingular ELE

3.1. A particular case

Consider theories without external coordinates and with only two different proper orders of the
inner coordinates. In such a case all the indices a can be divided into two groups: a = (a1, a2),

such that Na2 = n2 > Na1 = n1, L = L(· · · qa2[n2], · · · qa1[n1]). Consider first the case n1 > 0.
Then equation (15) can be written as

Fa2 = Ma2aq
a[Na+n2] +Ka2(· · · qb[Nb+n2−1]) = 0 (19)

Fa1 = Ma1aq
a[Na+n1] +Ka1(· · · qb[Nb+n1−1]) = 0. (20)

Equations (20) are constraints. Consider the set

Ma1aq
a[Na+n2] +K(1)

a1
(· · · qb[Nb+n2−1]) = 0 (21)

obtained from the constraints after being differentiated n2 −n1 times with respect to the time t.
Since M 	= 0, the rectangular matrix Ma1a has a maximal rank, therefore there exists another

5 A rectangular matrix with elements ∂Aα/∂xi is often denoted as ∂A/∂x and called the Jacobi matrix.
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division of the indices:

a = (a|i) [a|i] = [ai] i = 1, 2 det Ma1b|1 	= 0. (22)

Note that

ai = (ai|1, ai|2) a|i = (a1|i , a2|i) [a1|2] = [a2|1]. (23)

The set (21) can be solved with respect to the derivatives qa|1[Na|1 +n2] as follows:

q
a|1[Na|1 +n2] = −(M−1

1

)a|1a1
[
(M3)a1a|2q

a|2[Na|2 +n2] +K(1)
a1
(· · · qb[Nb+n2−1])

]
. (24)

Here the matricesM1 and M3 are defined by the following block representation of the matrix
M:

Mab =
(
(M2)a2b|1 (M4)a2b|2
(M1)a1b|1 (M3)a1b|2

)
detMa1b|1 	= 0 �⇒ detM1 	= 0.

Excluding the derivatives qa|1[Na|1 +n2] from equation (19) with the help of (24), we get the
equations

(M5)a2b|2q
b|2[Nb|2 +n2] +K(2)

a2
(· · · qb[Nb+n2−1]) = 0. (25)

Taking into account a useful relation

detM = det

(
M2 M4

M1 M3

)
= det

(
0 M4 −M2M

−1
1 M3

M1 M3

)
= detM1 det

(
M4 −M2M

−1
1 M3

)
(26)

which is related to the Gaussian reduction of matrices [11], we get

detM 	= 0
detM1 	= 0

}
�⇒ detM5 	= 0 M5 = M4 −M2M

−1
1 M3. (27)

Therefore, (25) can be solved with respect to the highest-order derivatives qa|2[Na|2 +n2] as

q
a|2[Na|2 +n2] = −(M−1

5

)a|2a2
[
Ka2(· · · qb[Nb+n2−1])− (

M2M
−1
1

)a1

a2
K(1)
a1
(· · · qb[Nb+n2−1])

]
≡ ϕa|2(· · · qb|2[Nb|2 +n2−1]

, · · · qb|1[Nb|1 +n2−1]
). (28)

Thus, we get a set

ψa|2 = q
a|2[Na|2 +n2] − ϕa|2(· · · qb|2[Nb|2 +n2−1]

, · · · qb|1[Nb|1 +n2−1]
) = 0 (29)

Fa1 = (M1)a1a|1q
a|1[Na|1 +n1] −K(3)

a1
(· · · qb|2[Nb|2 +n1]

, · · · qb|1[Nb|1 +n1−1]
) = 0 (30)

which is strong equivalent to the initial ELE by virtue of lemma 1.
Due to the condition detM1 	= 0, equations (30) can be solved with respect to qa|1[Na|1 +n1]

and we obtain

q
a|1[Na|1 +n1] = −(M−1

1

)a|1a1
[
(M3)a1a|2q

a|2[Na|2 +n1] +Ka1(· · · qb[Nb+n2−1])
]

≡ f a|1(· · · qb|2[Nb|2 +n1]
, · · · qb|1[Nb|1 +n1−1]

). (31)

Equations (29) and (31) are not of canonical form since the functions ϕa|2 contain derivatives
q
b|1[Nb|1 +n2−1] exceeding the ‘allowed’ order [Nb|1 + n1 − 1]. Now we exclude all the surplus

derivatives qa|1[Na|1 +n1]
, . . . , q

a|1[Na|1 +n2−1] from the right-hand side of (29) with the help of (31)
and its corresponding derivatives. To this end we need to differentiate (31) not more than
n2 − n1 − 1 times. Finally, we obtain the following strong equivalent form (the equivalence
is justified by lemma 1) of the ELE:

q
a|2[Na|2 +n2] = f a|2(· · · qb|2[Nb|2 +n2−1]

, · · · qb|1[Nb|1 +n1−1]
)

(32)
q
a|1[Na|1 +n1] = f a|1(· · · qb|2[Nb|2 +n1]

, · · · qb|1[Nb|1 +n1−1]
).
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It is just the canonical form. Taking into account the division of the indices w.r.t. proper orders
of the coordinates, one gets

qa2|2[2n2] = f a2|2(· · · qb2|2[2n2−1], · · · qb1|2[n1+n2−1], · · · qb2|2[n2+n1−1], · · · qb1|1[2n1−1])

qa1|2[n1+n2] = f a1|2(· · · qb2|2[2n2−1], · · · qb1|2[n1+n2−1], · · · qb2|1[n2+n1−1], · · · qb1|1[2n1−1])
(33)

qa2|1[n2+n1] = f a2|1(· · · qb2|2[n1+n2], · · · qb1|2[2n1], · · · qb2|1[n2+n1−1], · · · qb1|1[2n1−1])

qa1|1[2n1] = f a1|1(· · · qb2|2[n1+n2], · · · qb1|2[2n1], · · · qb2|1[n2+n1−1], · · · qb1|1[2n1−1]).

Note that the number of initial data is equal to 2
∑

a Na. Indeed,

[a2|2](n2 + n2) + [a1|2](n1 + n2) + [a2|1](n2 + n1) + [a1|1](n1 + n1)

= 2[a2]n2 + 2[a1]n1 = 2
∑
a

Na.

One ought to mention that the canonical form (33) was obtained in [12]. However, the
procedure that was used for that purpose did not provide the proof of the equivalence between
the initial ELE and the form (33).

Suppose now that the Lagrange function contains degenerate coordinates qa0 , a =
(a0, a1). Thus, L = L(qa0, · · · qa1 [n1]) and the ELE read

Fa1 ≡ Ma1aq
a[Na+n1] +Ka1(· · · qb[Nb+n1−1]) = 0 (34)

Fa0 ≡ ∂L

∂qa0
= Ma0(· · · qb[Nb]) = 0. (35)

Despite these equations being formally different from the above case, the whole procedure of
reductions goes through without any essential change. In fact, differentiating equations (35)
n1 times, one obtains

Ma0aq
a[Na+n1] +K(1)

a0
(· · · qb[Nb+n1−1]) = 0 (36)

and all the previous steps may be done as before. Namely, one obtains

q
a|1[Na|1 +n1] = ϕa|1(· · · qb|1[Nb|1 +n1−1]

, · · · qb|0[Nb|0 +n0−1]
) (37)

and, since det ‖(M1)a0a|0‖ 	= 0, equations (35) can be solved with respect to the variable
q
a|0[Na|0 ] as follows:

q
a|0[Na|0 ] = f a|0(· · · qb|1[Nb|1 ]

, · · · qb|0[Nb|0−1]
).

Finally, after eliminating the ‘bad’ derivatives on the right-hand side of (37) for qa|1[Na|1 +n1]

one ends up again with equations (33) but now with n2 → n1, n1 → 0 (by convention
qb1|1[−1] ≡ 0).

3.2. General nonsingular ELE

Consider the general nonsingular ELE. Here the Lagrange function may contain some
degenerate inner coordinates, higher derivatives of some inner coordinates, and, moreover,
may depend on some external coordinates,L = L(· · · qa[Na]; uµ),Na � 0. Thus, we are going
to deal with the nonsingular ELE of the form (15). Our aim is to present these equations in an
equivalent canonical form.
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Theorem 1. The nonsingular ELE (15) can be transformed to the following equivalent
canonical form:

f ai|k = qai|k[ni+nk] − ϕai|k (· · · qbj |k− [nj+nk− −1], · · · qbj |k+ [nj+nk]; · · ·uµ[nk]) = 0
(38)

I � k+ � k + 1 k � k− � 0 i, j, k = 0, 1, . . . , I

where the indices of the coordinates are divided into groups as follows: a = (ai) is the division
of the indices w.r.t. the proper orders of the coordinates, and besides

ai = (ai|k, i, k = 0, 1, . . . , I ) [ai|k] � 0
∑
k

[ai|k] =
∑
k

[ak|i] = [ai] = [a|i].

Moreover, the equivalence F ∼ f between the corresponding LF holds true. That implies

Fa = Û abf
b f b = V̂ baFa ÛabV̂

bc = δca

where Û and V̂ are LO. Besides, that implies the strong equivalence between the ELE and
their canonical form (38).

The proof of theorem 1 may be considered, in fact, as the general reduction procedure to
the canonical form for the nonsingular ELE.

It is reasonable to divide the reduction procedure into two parts. These parts may be
called conditionally ‘the preliminary resolution’ and ‘the subordination procedure’.

3.2.1. Preliminary resolution. Let us introduce the notation a = (a, aI ), a = (ak, k =
0, 1, . . . , I − 1),Na < nI , such that the ELE read

FaI (· · · qb[Nb+nI ]; · · ·uµ[nI ]) = MaIbq
b[Nb+nI ] +KaI (· · · qb[Nb+nI−1]; · · · uµ[nI ]) = 0 (39)

Fa(· · · qb[Nb+Na]; · · ·uµ[Na]) = 0. (40)

Recall that equations (40) can be considered as constraints.
The first step of the procedure is the following: we consider the consistency conditions

of the constraints. Namely, we consider the equations that are obtained from the constraints
by differentiating them nI − na times,

F
[nI−Na ]
a = Mabq

b[Nb+nI ] +K(1)
a (· · · qb[Nb+nI−1]; · · ·uµ[nI ]) = 0. (41)

HereK(1)
a are some LF of the indicated arguments. Note that the orders of all the coordinates

in the set (41) coincide with those in the complete set. For M 	= 0, the matrix

∂F [nI−Na ]
a

∂qb[Nb+nI ]
= ∂2L

∂qa[Na]∂qb[Nb]
= Mab (42)

is invertible. At the same time, the rectangular matrix Maa has the maximal rank [ a ].
Therefore, there exists a division of the indices a such that

a = (ā, a|I ) [ā] = [a] [a|I ] = [aI ] detMaā 	= 0. (43)

Thus, the division (13) of the indices a w.r.t. the proper orders of the coordinates becomes
more detailed,

ai = (āi, ai|I ) ā = (āi) a|I = (ai|I ) [ai|I ] � 0∑
i

[ai|I ] = [a|I ] = [aI ]
∑
i

[āi] = [ā] = [a].
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Due to (43), the set (41) can be solved with respect to the derivatives qā[Nā+nI ] as

qā[Nā+nI ] = −(M−1
1

)āa[
(M3)ab|I q

b|I [Nb|I +nI ] +K(1)
a (· · · qb[Nb+nI−1]; · · ·uµ[nI ])

]
(44)

where

Mab =
(
(M2)aI b̄ (M4)aI b|I
(M1)ab̄ (M3)ab|I

)
.

Excluding the derivatives qā[Nā+nI ] from equations (39) with the help of (44), we get the
set

(M5)aI b|I q
b|I [Nb|I +nI ] +K(2)

aI
(· · · qb[Nb+nI−1]; · · ·uµ[nI ]) = 0

(45)
M5 = M4 −M2M

−1
1 M3 detM5 	= 0

where K(2)
aI

are some LF of the indicated arguments. The set (45) can be solved with respect

to its highest-order derivatives qa|I [Na|I +nI ] as

q
a|I [Na|I +nI ] = φa|I (· · · qb|I [Nb|I +nI−1]

, · · · qb̄[Nb̄+nI−1]; · · · uµ[nI ]) (46)

where ϕa|I are some LF. Thus, after the first step we get a set of equations

ψa|I = q
a|I [Na|I +nI ] − φa|I (· · · qb|I [Nb|I +nI−1]

, · · · qb̄[Nb̄+nI−1]; · · ·uµ[nI ]) = 0 (47)

Fa(· · · qb[Nb+Na]; · · ·uµ[Na]) = 0 a = (ak, k = 0, 1, . . . , I − 1) Na < NI (48)

which are strong equivalent to the initial ELE by virtue of lemma 1 in the appendix.
In the second step we turn to the subset (48). We remark that this subset has the same

structure as the complete initial set of the ELE if one considers the coordinates qā as inner
ones and the variables qa|I as external ones. Namely, let us denote

F
1

a(· · · qb̄[Nb̄+Na]; · · ·uµ1[Na]) = Fa(· · · qb[Nb+Na]; · · ·uµ[Na])

uµ1 = (uµ, · · · qa|I [Na|I ]
) µ1 = (µ, a|I ).

Then the set (48) can be written as

F
1

a(· · · qb̄[Nb̄+Na]; · · ·uµ1[Na ]) = 0 a = (ak, k = 0, 1, . . . , I − 1) Na < NI (49)

where

F
1

ak
=
{
Makb̄q

b̄[Nb̄+nk] +K ak (· · · qb̄[Nb̄+nk−1]; · · · uµ1[nk]) k = 1, . . . , I − 1
M a0(· · · qb̄[Nb̄]; uµ1) = ∂L/∂qa0 .

Here qā are the inner coordinates, and uµ1 are the external coordinates. The order of the set
(49) is 2nI−1. Furthermore, by virtue of (43), the matrix

∂F
1
a

[nI−1−Na ]

∂qb̄[Nb̄+nI−1]
= Mab̄ (50)

is invertible. Thus, the structure (15), (16) is repeated completely.
At the same time, the number of inner variables, the number of equations and the order

of the set (49) are less than those of the initial set of the ELE (15), (16).
Now, we apply the same procedure as in the first step to the reduced set ( 49). That will

be the second step of the reduction procedure. It will produce equations of similar structure
with lesser inner variables and of lower order. After the last (I + 1)th step the ELE (15) may
be written in the following strong equivalent form:

qai|k[ni+nk] = φai|k (· · · qbj |k+ [nj+nk], · · · qbj |k− [nj+nk−1]; · · ·uµ[nk])
(51)

I � k+ � k + 1 k � k− � 0 I � i, j � 0
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where φai|k are some LF of the indicated arguments (the arguments · · · qbj |k+ [nj+nk] result from
those coordinates that intermediately have been considered as external ones), and the indices
ai are divided into the following groups:

ai = (ai|k) [ai|k] � 0
∑
k

[ai|k] =
∑
k

[ak|i] = [ai] i, k = 0, 1, . . . , I.

The set (51) is still not the canonical form of the ELE. The reason is that the right-hand
sides of the set contain derivatives of orders that may exceed the orders ni +nk of the (highest)
derivatives qai|k[ni+nk] appearing on the left-hand side of the set. We recall that by the definition
in the canonical form there is a subordination of derivative orders, namely, the orders of all the
derivatives on the right-hand sides have to be less than those on the left-hand side. Explicitly,
this subordination would require that the following inequalities should hold:

nj + nk+ > nj + nk nj + nk− > nj + nk − 1

which, because of the inequalities nI > nI−1 > · · · > n1 > n0, is true for the first line
and the case k− = k of the second line, and it is definitely not true for the cases k− < k.
Arranging equations (51) (for fixed value of i) in descending order w.r.t. k, and the arguments
in the functions ϕ (for fixed value of j ) also in descending order w.r.t. the values of k+ and
k−, we get, when disregarding the common value nj , a quadratic matrix whose main diagonal
(i.e. elements with k = k−) contains the entries nk − 1, whereas the entries to the left of that
diagonal are equal to nk, and to the right of that diagonal are equal to nk −1. Therefore, below
the main diagonal ‘good’ derivatives occur, and above it occur ‘bad’ derivatives not obeying
the subordination requirement.

3.2.2. Subordination procedure. One can see that these ‘bad’ derivatives can be excluded
from the right-hand sides with the help of the corresponding ‘lower’ equations of the set and
their differential consequences (compare equations (29) and (31) for the simple case I = 2).
In what follows we call such an exclusion the subordination procedure.

In order to be more definite let us write down two arbitrary lines, 	 > k , of the right-hand
sides of the set of equations (51) (for the highest derivatives only):

φai|	 (qbj |I [nj+n	], . . . , qbj |	+1[nj+n	], qbj |	[nj+n	−1], . . . , qbj |k+1[nj+n	−1],

qbj |k[nj+n	−1], . . . , qbj |0[nj+n	−1])

...

φai|k (qbj |I [nj+nk], . . . , qbj |	+1[nj+nk], qbj |	[nj+nk], . . . , qbj |k+1[nj+nk], qbj |k[nj+nk−1], . . . , qbj |0[nj+nk−1]).

Obviously, because n	 > nk all the derivatives of the equation for qai|	[ni+n	] with
k � 	− � 0 are ‘bad’ with respect to the derivatives qai|k[ni+nk] (recall that 	 � 	− � 0).
However, these ‘bad’ derivatives can be eliminated by the equations for the latter ones,
qai|k[ni+nk], and their differential consequences up to the order n	 − nk − 1. Thereby, the
function φai|	 changes into some new function φ̃ai|	 . One can see that by doing this we do
not change the highest orders of derivatives of the other coordinates, both proper and external
ones, on the right-hand side of the equation for qai|	[ni+n	]. (Recall that the derivatives of the
external coordinates are uµ[n	] and uµ[nk], respectively.)

This subordination procedure, starting with 	 = I , may be done for any k < I , thereby
‘cleaning’ every entry on the right-hand side of equations for qai|I [ni+nI ]. Namely, the highest
orders of derivatives on the rhs become qbj |k− [ni+nk−−1] with I � k− � 0 (for the case 	 = I

no k+ appears). Then the procedure will be applied to the equations for qai|I−1[ni+nI−1], and so
forth, up to qai|0[ni+n0], where nothing is to be changed.
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After having eliminated all the ‘bad’ derivatives,we transformed the set (51), and therefore
the initial ELE, to the following strong equivalent (the equivalence is justified by lemma 1)
canonical form:

qai|k[ni+nk] = ϕai|k (· · · qbj |k+ [nj+nk], · · · qbj |k− [nj+nk−−1]; · · · uµ[nk])

I � k+ � k + 1 k � k− � 0 i, j, k = 0, 1, . . . , I

where ϕai|k are some LF of the indicated arguments. This proves theorem 1.
We see that there are no gauge coordinates in the nonsingular ELE.
The number of initial data is equal to 2

∑
a Na. Indeed,

∑
i,k

[ai|k](Ni +Nk) =
∑
i

(
Ni
∑
k

[ai|k]

)
+
∑
k

(
Nk
∑
i

[ai|k]

)
= 2

∑
a

Na.

One ought to remark that in the general case there exist many different canonical forms
of the nonsingular ELE. This uncertainty is related to the possibility of different choices of
nonzero minors of a matrix with a given rank (different divisions of the indices ai in course
of the reduction procedure). However, as was demonstrated above, the number of equations
in the canonical form (which is equal to the number of ELE in the nonsingular case) and the
number of initial data are the same for all possible canonical forms.

4. Canonical form of singular ELE

Studying the canonical form of nonsingular ELE, we have demonstrated that the equations in
the canonical form are solved with respect to the highest-order derivatives qai|k[ni+nk],where ni
are the proper orders of the coordinates qai . However, considering specific examples, one can
see that this is not always true for singular ELE. Namely, in the canonical form of the latter
case, the highest orders of the derivatives qai [l] may take on all the values from zero to ni + I .
The reduction procedure to the canonical form for the general singular ELE is considered
below. In the singular case, already after the first step of the reduction procedure, the ELE
cease to have their initial specific structure (15), (16). Namely, the simple structure of terms
with highest-order derivatives in the equations may be lost. That is why in the singular case
it is more convenient to formulate the reduction procedure for a more general set of ordinary
differential equations, which contains the ELE as a particular case. Namely, further we are
going to consider a set of the form6

FAµ(· · · qai [i+µ]) = 0 i = 0, 1, . . . , I µ = 0, . . . , J. (52)

Here FAµ(· · · qai [i+µ]) are some LF. ai and Aµ are used to denoted sets of indices, [ai] � 0,
[Aµ] � 0, and the complete set of the inner coordinates in equations (52) is qa =
(qa0, . . . , qaI ), a = (ai, i = 0, 1, . . . , I ). The indices A = (Aµ) enumerate the equations. In
the general case the number of indices A (the number of all the equations) is not equal to the
number of indices a (the number of coordinates). The division of the indices A into groups
is not related to the division of the indices a into groups. The orders of the coordinates qai in
the complete set (52) are Nai = i + J. In fact, these orders are defined by a subset of (52) with
µ = J. In all the other equations with µ < J the coordinates qai have orders less than i + J .
Thus, the latter equations are constraints.

Similar to the ELE (15), the set (52) has the following specific structure: in each equation
of the set the order of a coordinate qai is the sum of the proper order i and of the order µ. The
latter is the same for all the coordinates and is related to the number of the equation in the set.
6 We do not indicate here the possible external coordinates.
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Below we consider the reduction procedure to the canonical form for equations (52).
In fact, this reduction procedure is formulated in the proof of theorem 2. Theorem 2 holds
true under certain suppositions of the structure of the functions FAµ . These suppositions are
formulated as suppositions of the ranks of some Jacobi matrices involving the functions FAµ .
First of all, the complete matrix

MAµai = ∂FAµ

∂qai [i+µ]
=
∂F

[J−µ]
Aµ

∂qai [i+J ]
(53)

has to have a constant rank in the vicinity of the consideration point (one can see that the
matrix MAµai coincides with the generalized Hessian matrix if the set (52) is the Lagrangian
one).

Theorem 2. Under certain suppositions of the ranks, equations (52) can be transformed to
the following equivalent canonical form:

f ai|σ = qai|σ [i+σ ] − ϕai|σ (· · · qaj |σ− [j+σ−−1], · · · qaj |σ+ [j+σ ]) = 0

i, j = 0, 1, . . . , I σ = −I, . . . , J − I � σ− � σ σ + 1 � σ+ � J + 1
(54)

where all the indices a are divided into groups as follows:

ai = (ai|σ ) [ai|σ ] � 0 σ = −I, . . . , J + 1 ([ai|σ ] = 0 if i + σ < 0) (55)

and it is assumed that negative powers of the time derivatives do not exist, that is [qa[p]] = 0
for p < 0.

Moreover, the following equivalence between the corresponding LF holds true:

FA ∼ F̄ A =
(
f ai|σ

0G

)
A = (ai|σ ,G) i = 0, 1, . . . , I σ = −I, . . . , J

0G ≡ 0 ∀G [G] = [A] − [a] +
∑
i

[ai|J+1].
(56)

That implies

FA = ÛB
AF̄ B F̄ B = V̂ A

B FA ÛB
AV̂

C
B = δCA (57)

where Û and V̂ are LO.

Let us make some comments on theorem 2. The canonical form (54) of the singular ELE
differs from that (38) of the nonsingular ELE. As was demonstrated in the previous section,
in the latter case the spectrum of the orders of the variables qai in the canonical form extends
from i + µmin to i + J. In the singular case, we have to admit (and one can see this from
specific examples) the spectrum extends from 0 to i + J. Under such a supposition we can
justify by induction the structure (54) of the canonical form. One can see from (55) that
each group of the indices ai is divided into subgroups ai → ai|σ , σ = −I, . . . , J + 1. In
the canonical form the singular ELE are solved with respect to the highest-order derivatives
qai|σ [i+σ ], σ = −I, . . . , J ([ai|σ ] = 0 for i + σ < 0). There are no equations for the
coordinates qai|J+1 . These coordinates enter the set (54) as arbitrary functions of time. They
are gauge coordinates according to the general definition. As in the nonsingular case, it is
supposed that no coordinate qak|σ in the function ϕai|σ has an order greater than k + σ (the
proper order plus σ ). Besides, the order of the coordinates qbk|σ− in the function ϕai|σ has to be
less than k + σ− .

We are going to prove theorem 2 by induction w.r.t. N = I + J . To this end, we consider
first equations of lower orders, then we use induction to prove the general case.
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4.1. Equations of lower orders

Note that the case N = 0 implies I = J = 0 and the set (52) is reduced to the form

FA(q) = 0 q = (qa). (58)

Here theorem 2 holds true by virtue of lemma 3 in the appendix.
Let N = 1. That implies either I = 1, J = 0 or I = 0, J = 1. Consider, for example,

the first case. Here (i = 0, 1, µ = 0) and the set (52) reads

FA(q
a0, qa1 , q̇a1) = 0 [a1] > 0 [a0] � 0. (59)

In the case under consideration the supposition (53) reads

rank
∂FA

∂qai[i]
= r. (60)

Then there exists a division of the indices A = (A/1, A/2), ai = (ai/1, ai/2), [A/1] =
[a0/1] + [a0/1] = r , such that

det

∣∣∣∣ ∂FA/1∂qai/1[i]

∣∣∣∣ 	= 0.

Thus, we may solve the equations FA/1 = 0 with respect to qai/1[i],

FA/1 = 0 ⇐⇒ qai/1[i] = φai/1(qbi/1[i−1], qbi/2[i−1], qbi/2[i]). (61)

Then we exclude the arguments qai/1[i] from the functions FA/2 with the help of (61),

F̄ A/2 = FA/2 |qai/1[i]=φai/1 = F̄ A/2(q
a1).

By virtue of lemma 2 in the appendix, the functions F̄ A/2 depend on qa1 only. Thus, we have
the equivalence7

FA ∼ F̄ A =
(
FA/1(q

a0, qa1 , q̇a1)

F̄ A/2(q
a1)

)
. (62)

Now we suppose that the matrix ∂F̄ A/2/∂q
a1 has a constant rank. Therefore (see lemma 3)

F̄ A/2 ∼
(
qa1 − ϕa1(qā1)

0G1

)
a1 = (a1, ā1).

Let us exclude the arguments qa1 , q̇a1 from the functions FA/1 , with the help of the equations
qa1 = ϕa1(qā1),

F
1

A/1
(qa0 , qā1, q̇ ā1) = FA/1 |qa1 =ϕa1.

Then the following equivalence holds true:

F ∼ F
1 =


F

1

A/1
(qa0 , qā1, q̇ ā1)

qa1 − ϕa1(qā1)

0G1


 a = (a0, a1) a1 = (a1, ā1). (63)

The set of functions F
1

has the same structure as the initial set F. However, the number of

the nonzero functions F
1

is less than the number of the functions F. Moreover, some of the

functions F
1

depend linearly on a part of the variables. That is why the supposition of
type (60) for the functions F (1) is reduced to the supposition about the rank of the matrix
7 Here, and in what follows, we use lemma 1 to justify the equivalence.
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∂F
1

A/1

/
∂(qa0, q̇ ā1). Accepting the latter supposition we apply the above reduction procedure

to the functions F
1

and so on. After the ith stage we have the following equivalence:

F ∼ F
i =



F

i

A/i
(qa0, qā i , q̇ ā i )

qa i − ϕa i (qā i )

0Gi

a = (a0, a1) a1 = (a i, āi).

The procedure ends at the kth stage when

rank
∂F

k

A/k

∂(q̇ āk , qa0)
= [A/k].

Then there exists a division of the indices āk = (a1|0, ag1), a0 = (a0|0, ag0), [a1|0] + [a0|0] =
[A/k], such that

det
∂F

k

A/k

∂(q̇a1|0, qa0|0)
	= 0 �⇒ F

k

A/k
∼
(
q̇a1|0 − ϕa1|0(qa1|0, qag0 , qag1 , q̇ag1 )

qa0|0 − ϕa0|0(qa1|0, qag0 , qag1 , q̇ag1 )

)
.

Denoting a k ≡ a1|−1, G = Gk, such that a = (a1|−1, a0|0, a1|0, ag), and ag = (ag0 , ag1),
[G] = [A] − [a] + [ag], we get finally the equivalence

F ∼



q̇a1|0 − ϕa1|0(qa1|0, qag0 , qag1 , q̇ag1 )

qa0|0 − ϕa0|0(qa1|0, qag0 , qag1 , q̇ag1 )

qa1|−1 − ϕa1|−1(qa1|0, qag1 )

0G


 . (64)

Here qag = (qag0 , qag1 ) are gauge coordinates. Thus, theorem 2 holds true in this case.
The case I = 0, J = 1 (i = 0, µ = 0, 1) corresponds to the equations of the form

FA1(q
a1, q̇a1) = 0 FA0(q

a1) = 0. (65)

Such equations present a particular case ([a0] = 0) of the equations F̄ A = 0 with the LF F̄ A
defined in (62). The reduction procedure for the latter case was considered above. It leads to
the following equivalence:

F ∼

q̇a|1 − ϕa|1(qa|1, qag , q̇ag )

qa|0 − ϕa|0(qa|1, qag )

0G


 a = (a|0, a|1, ag) [G] = [A] − [a] + [ag].

Here qag are the gauge coordinates. Thus, the theorem holds true in this case as well.

4.2. Equations of arbitrary orders

We have verified that theorem 2 holds true for N = 0, 1. Now we are going to prove the
theorem for N = I + J = K (where K is some fixed number) supposing that the theorem
holds true for any N < K .

In the first step we consider the set

F
[J−µ]
Aµ

(· · · qai [i+J ]) = 0 i = 0, 1, . . . , I µ = 0, . . . , J (66)

which is obtained from the initial set (52) by substituting the constraints by the corresponding
consistency conditions (conditions obtained from the constraints FAµ by J − µ time
differentiations). According to the supposition (53), there exists a division of the indices
Aµ and ai as Aµ = (Aµ/1, Aµ/2), ai = (ai/1, ai/2),

∑
µ[Aµ/1] = ∑

i[ai/1] = r , such that

det

∣∣∣∣∣
∂F

[J−µ]
Aµ/1

∂qai/1[i+J ]

∣∣∣∣∣ 	= 0. (67)
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Thus, we may solve the equationsF [J−µ]
Aµ/1

= 0 with respect to the derivatives qai/1[i+J ].Namely,

F
[J−µ]
Aµ/1

= 0 ⇐⇒ qai/1[i+J ] = ϕai/1(· · · qbj/1[j+J−1], · · · qbj/2[j+J ]). (68)

Now we pass from the functions FAJ/2 to the F̄ AJ/2 excluding the arguments qbi/1[i+J ] from the
former,

F̄ AJ/2 = FAJ/2 |f=0 = F̄ AJ/2(· · · qbi[i+J−1]). (69)

The fact that the functions F̄ AJ/2 do not depend on both qbi/1[i+J ] and qbi/2[i+J ] is based on
lemma 2 in the appendix. Thus, we have the equivalence (see lemma 1 in the appendix)

FA ∼

 FAJ/1

F̄ AJ/2
FAν , ν = 0, . . . , J − 1


 ∼

(
FAJ/1
F ′
A′

)
(70)

where

F ′
A′ = (

F ′
A′
ν
, ν = 0, . . . , J − 1

) =


FAν (· · · qbi [i+ν]) ν = 0, . . . , J − 2

F ′
A′
J−1
(· · · qbi [i+J−1]) =

{
FAJ−1

F̄ AJ/2 .

(71)

Let us turn to the functions F ′
A′
ν
. They have the same structure as in (52) and correspond

to the case N = I + J < K. In accordance with the induction hypothesis, supposing, in
particular, that the matrix

M ′
A′
νai

=
∂F ′

A′
ν

∂qai[i+ν]

has a constant rank in the consideration point, the following equivalence holds true:

F ′
A′ ∼

(
qai|σ [i+σ ] − ϕai|σ (· · · qbj |σ− [j+σ−−1], · · · qbj |σ+ [j+σ ], · · · qbj |J [j+σ ])

0G′

)

i, j = 0, 1, . . . , I [G′] = [A′] − [a] +
∑
i

[ai|J ] (72)

σ = −I, . . . , J − 1 − I � σ− � σ σ + 1 � σ+ � J − 1.

Taking into account (70), we obtain

F ∼

 FAJ/1(· · · qbi [i+J ])

qai|σ [i+σ ] − ϕai|σ (· · · qbj |σ− [j+σ−−1], · · · qbj |σ+ [j+σ ], · · · qbj |J [j+σ ])

0G′




i, j = 0, 1, . . . , I σ = −I, . . . , J − 1 − I � σ− � σ σ + 1 � σ+ � J − 1.

(73)

Now we pass from the functions FAJ/1 to the F̄ AJ/1 excluding the arguments qai|σ [pi ], pi �
i + σ, σ = −I, . . . , J − 1 from the former. As a result, we have the following equivalence:

F ∼ F̃ =

 F̄ AJ/1(· · · qbi|J [i+J ], · · · qbi|σ [i+σ−1])

qai|σ [i+σ ] − ϕai|σ (· · · qbj |σ− [j+σ−−1], · · · qbj |σ+ [j+σ ], · · · qbj |J [j+σ ])

0G′


 . (74)

The functions F̃ have the same structure as in (52), however, they depend linearly on a
part of highest-order derivatives. Here the supposition of the rank for the matrix

∂F̃ A

∂(qai|J [i+J ], qai|σ [i+σ ])
A = (AJ/1, ai|σ ,G′) (75)
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is equivalent to the same supposition for the matrix

∂F̄ AJ/1

∂qbi|J [i+J ]
. (76)

Let this rank be equal to [AJ/1]. In this case there exists a final division of indices,

ai|J → (ai|J , ai|J+1) with [ai|J ] = [AJ/1]

such that the equations F̄ AJ/1 = 0 can be solved with respect to the derivatives qai|J [i+J ] and
we obtain, instead of the first two lines of (74), the following expressions:

qai|J [i+J ] − ϕai|J (· · · qbj |J [j+J−1], · · · qbj |σ [j+σ−1], · · · qbj |J+1[j+J ])

qai|σ [i+σ ] − ϕai|σ (· · · qbj |σ− [j+σ−−1], · · · qbj |σ+ [j+σ ], · · · qbj |J [j+σ ])

i, j = 0, 1, . . . , I σ = −I, . . . , J − 1 −I � σ− � σ σ + 1 � σ+ � J − 1.

Now, let us put together the first two entries of ϕai|J as · · · qbj |σ [j+σ−1],−I � σ � J and
recall that for σ = J no corresponding σ+ occurs. Furthermore, let us replace the last entry
of ϕai|σ as follows: · · · qbj |J [j+σ ] → · · · qbj |J [j+σ ] · · · qbj |J+1[j+σ ],−I � σ � J − 1, then we get
the missing contribution to σ+ for the case under consideration. So, we end up exactly with
equation (54) and theorem 2 is proved.

If the rank is less than [AJ/1] then the above procedure is applied to the functions F̄ AJ/1 .
Doing that we lower the number of the equations that are not yet reduced to the canonical
form (the equations of the type F̄ AJ/1 = 0). Note that such a diminution does not happen
at the first stage if [AJ/2] = 0. At a certain stage the procedure does not lower the number
of above-mentioned equations. This can happen when the rank of the matrix of type (76) is
maximal, i.e. is equal to the number of the functions of the type F̄ AJ/1 . In such a case we
may reduce them to the canonical form as was mentioned above. This can also happen when
we do not obtain the functions of the type F̄ AJ/1 in the reduction procedure. That means that
already in the previous step the set is reduced to the case N = K − 1, i.e. the possibility of
the reduction to the canonical form is proved.

Finally, we stress that the reduction procedure is formulated for sets of equations of
the type (52) (the ELE are a particular case of such sets). The procedure holds true under
certain suppositions of ranks. These suppositions demand various Jacobi matrices of the type
∂Fs/∂q

a[l] to have constant ranks in the vicinity of the consideration point. Here Fs = 0 are
equations obtained at a given stage of the procedure and qa[l] are highest-order derivatives in
these equations. It is important to realize that proving the equivalence (56) we prove at the
same time the locality of the operators Û and V̂ from (57). In fact, the latter proof is provided
by the applicability of the lemmas in the appendix.

5. Gauge identities and action symmetries

It was demonstrated above that in the general case of singular ELE the number of equations
in the canonical form is less than the number of equations in the initial set of the differential
equations. This reduction is related to the fact that in the canonical form we retain the
independent equations only, whereas the initial equations may be dependent. The dependence
of the equations in the initial set may be treated as the existence of some identities between the
initial equations. The identities between the ELE imply the existence of gauge transformations
of the corresponding action. Below we discuss this interrelationship in detail.

First, we introduce some relevant definitions: the relation of the form

R̂aFa ≡ 0 (77)
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where R̂a are some LO, and Fa(q [l]) are some LF, is called the identity between the equations
Fa(q

[l]) = 0.The identity sign ≡ means that the left-hand side of (77) is zero for any arguments
q [l].

Any set R̂ = (R̂a) of LO that obeys relation (77) is called the generator of an identity.
Whenever R̂ is a generator then n̂R̂ with some LO n̂ is a generator as well. Any linear
combination n̂iR̂i of some generators R̂i with operator coefficients n̂i is a generator.

A generator R̂ will be called nontrivial if the relation8 n̂R̂ = Ô(F ) can only be provided
by a LO n̂ of the form n̂ = Ô(F ).

A set of generators R̂i will be called independent if the relation n̂iR̂i = Ô(F ) can only
be provided by n̂i of the form n̂i = Ô(F ). Identities generated by independent generators will
be called independent.

Note that for any set of LFFa , there always exist trivial generators. Namely, the generators
R̂triv = (

R̂atriv
) = Ô(F ) of the form

R̂atriv =
∑
k,l

F
[k]
b ubk|al

dl

dt l
ubk|al = −ual|bk (78)

with arbitrary antisymmetric LF ubk|al obviously lead to the identities (77). These identities
are not, however, connected to the mutual dependence of the functions Fa.

An independent set of generators R̂g is complete whenever any generator R̂ can be
represented in the form R̂ = λ̂gR̂g + R̂triv with some LO λ̂g. Any two complete sets of

independent generators R̂g and R̂′
g are related as R̂′

g = Û
g′
g R̂g′ + R̂triv,where Û is an invertible

LO.
Supposing now that Fa in equation (77) are functional derivatives of an action,

Fa = δS/δqa, such that Fa = 0 are ELE. Let the functions Fa obey all the necessary
suppositions of ranks such that ELE can be reduced to the canonical form (54). Let us write
here this canonical form as follows9:

f α = qα[lα ] − ϕα(· · · qα[lα−1]; · · · qg[lg ]) = 0 a = (α, g) (79)

where qg are gauge coordinates. Moreover, according to theorem 2,there exists the equivalence

Fa ∼ F̄ a =
(
f α

0g

)
�⇒ Fa = Û b

aF̄ b F̄ a = V̂ b
a Fb Ûb

aV̂
c
b = δca (80)

where Û and V̂ are LO. Now we may consider the identity (77) as an equation for finding the
general form for the generator R̂ . Using (80) we transform this problem to the one for finding
the operators ξ̂ a ,

ξ̂ aF̄ a ≡ 0 R̂a = ξ̂ bV̂ a
b . (81)

Using the explicit form (80) of the functions F̄ a , we get ξ̂ a = (ξ̂ αξ̂ g), a = (α, g), where ξ̂ α

obey the equation

ξ̂ αf α ≡ 0 (82)

and ξ̂ g is a set of arbitrary LO. Since the functions f have the canonical form (80), any solution
of equation (82) is presented by trivial generators of the form

ξ̂ α = ξ̂ αtriv =
∑
k,l

(
dl

dt l
fα′

)
ulα

′ |kα dk

dtk
ulα

′ |kα = −ukα|lα′
(83)

8 We denote by Ô(F ) LO of the form (3) with all the LF ukAa = O(F), where

O(F)|F=0 = 0.

9 Here, we do not distinguish possible different proper orders of the coordinates.
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where ulα
′ |kα are arbitrary antisymmetric LF. To demonstrate that we present the generators

ξ̂ α as ξ̂ α = ∑K
k=0 ξ

αkdk/dtk, where ξαk are some LF. Then, in equation (82), we pass from
the variables qα[k], qg[l], k, l = 0, 1, . . ., to the qα[kα], f [l]

α , q
g[l], kα = 0, 1, . . . , lα − 1, l =

0, 1, . . . . Such a variable change is not singular. In terms of the new variables, equation (82)
reads

K∑
k=0

ξαkf [k]
α = 0 K < ∞.

Its general solution is well known

ξαk =
∑
l

f
[l]
α′ u

lα′ |kα ulα
′ |kα = −ukα|lα′

.

Now we can write the general solution of equation (81) as

ξ̂ a = ξ̂ gδag + ξ̂ atriv ξ̂ atriv =
∑
k,l

(
dl

dt l
F̄ b

)
ulb|ka

dk

dtk
ulb|ka = −uka|lb. (84)

Let b = (α′, g′), a = (α, g) in (84). Then ulg
′ |kα, ulα

′ |kg = −ukg|lα′
and ulg

′ |kg are arbitrary
LF (e.g., they can be selected to be zero). Indeed, the functions ulg

′ |kα and ulg
′ |kg do not enter

the expressions for the generators ξ̂ a . Besides, terms with ulα
′ |kg affect only the generators ξ̂ g ,

which are arbitrary by construction. Accordingly, the general solution of equation (77) reads

R̂ = ξ̂ gR̂g + R̂triv R̂g = (
R̂ag = δbgV̂

a
b = V̂ a

g

)
(85)

and

R̂atriv = ξ̂ btrivV̂
a
b =

∑
k,l

[
dl

dt l
(
V̂ c
b Fc

)]
ulb|kd

dk

dtk
V̂ a
d =

∑
k,l

(
dl

dt l
Fb

)
T lb|ka

dk

dtk

where T lb|ka = −T ka|lb are some LF. The set of generators R̂g = (
R̂ag = V̂ a

g

)
is complete

and is presented by LO. Moreover, these generators are independent. Indeed, multiplying the
equation n̂gR̂ag = Ô(F ) from the right by Û b

a, we get n̂gδbg = Ô(F ) �⇒ n̂g = Ô(F ).
Thus, there exist the following nontrivial identities between the ELE:

R̂ag
δS

δqa
≡ 0 g = 1, . . . , r (86)

with generators R̂g that are LO. These identities are called the gauge identities. As is well
known (see, for example, [2, 3]), the existence of the gauge identities (86) implies the existence
of infinitesimal gauge transformations of the form

qa → qa + δqa δqa = (R̂T )agε
g (87)

where r parameters εg = εg(t) are arbitrary functions of time t. Note that R̂T are LO as well.
Thus, it was demonstrated that for theories that obey appropriate suppositions of the ranks

there exists a constructive procedure for revealing the gauge generators. For such theories all
the generators are LO. The number of independent generators and, therefore, the number of
independent gauge transformations is equal to the number of gauge coordinates in the ELE.

As a simple mechanical example, consider the action of the form10

S =
∫
L dt L = 1

2
(ẋ − y)2 +

a

2
(y2 − x2). (88)

10 At a 	= 0 we have a finite-dimensional analogue of the Proca action, and at a = 0 we have the analogue of the
Maxwell action.
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The corresponding ELE are

F1 = ẍ − ẏ + ax = 0 F2 = ẋ − (1 + a)y = 0 (89)

where F2 = 0 is a constraint. The generalized Hessian reads

M =
∣∣∣∣∣

∂2L
∂ẋ2 = 1 ∂2L

∂ẋ∂y
= −1

∂2L
∂y∂ẋ

= −1 ∂2L
∂y2 = a + 1

∣∣∣∣∣ = a. (90)

Let a 	= 0,M 	= 0. In such a nonsingular case the reduction procedure looks as follows:
with the help of the consistency condition Ḟ2 = 0 �⇒ ẍ = (1 + a)ẏ, we eliminate ẍ from the
first ELE. Thus, we get an equivalent set, which has the canonical form

ẏ = −x ẋ = (1 + a)y. (91)

Another canonical form

ẍ = −(1 + a)x y = (1 + a)−1ẋ (92)

we obtain by eliminating ẏ from the equationF1 = 0 with the help of the consistency condition
Ḟ2 = 0 �⇒ ẏ = ẍ/(1 + a).

Let a = 0. The case is singular,M = 0, and the rank of the Hessian matrix is equal to 1.
One can easily see that the equivalence(

F1

F2

)
= Û

(
ẋ − y

0

)
Û =

(
d/dt 1

1 0

)
Û−1 =

(
0 1
1 −d/dt

)
holds true. Then the canonical form of the ELE reads ẋ = y and there is a gauge identity

R̂aFa ≡ 0 R̂1 = 1 R̂2 = −d/dt .

The operators transposed to R̂a are (R̂T )a = (
(R̂T )1 = 1, (R̂T )2 = d

dt

)
. Thus, at a = 0, the

action (88) is invariant under the gauge transformation x → x + ε, y → y + ε̇. In the case
under consideration, the ELE have two canonical forms: ẋ = y and y = ẋ.

6. Concluding remarks

We have formulated the reduction procedure which allows one to transform the ELE to the
canonical form as well as to establish possible gauge identities between the equations. The
latter part of the procedure can be considered as a constructive way of finding all the gauge
generators within the Lagrangian formulation. At the same time, it is proved that, for local
theories, all the gauge generators are local in time operators. The canonical form of the ELE
reveals their hidden structure, in particular, it presents the spectrum of possible initial data,
and it allows one to separate coordinates into nongauge and gauge ones. One also ought to
remark that the reduction procedure can be, in particular, treated as a procedure for finding
constraints in the Lagrangian formulation.

In that respect one can compare the reduction procedure with the well-known Dirac
procedure in the Hamiltonian formulation of constrained systems [1–3]. Recall that the
Dirac procedure is applicable to the Hamilton equations with primary constraints, namely to
equations of the form

F(η, η̇) = η̇ − {η,H (1)} = 0 �(1)(η) = 0 H(1) = H(η) + λ�(1)(η). (93)

Here η = (qa, pa) are phase-space variables; �(1)(η) = 0 are primary constraints, λ are
Lagrange multipliers to the primary constraints, and H(1) is the total Hamiltonian . By {·, ·}
the Poisson bracket is denoted. The aim of the procedure is to eliminate as many λ as possible
from the equations, to find all the constraints in the theory. The procedure is based on the
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consistency conditions �̇(1) = 0. Using the equations F(η, η̇) = 0, we may transform any
consistency condition to the following form:

�̇(1) = {�(1), H (1)} = 0.

From these equations one can define some λ as functions of η and reveal some new constraints.
Then the procedure has to be applied to the latter constraints and so on.

Equations (93) present a particular case of differential equations considered in the present
paper (indeed, these equations are ELE for a Hamiltonian action). Thus, our reduction
procedure may be applied to these equations. Namely, first one has to consider the equations
FA = 0, �̇(1) = 0 and select independent w.r.t. η̇ equations. Since equations of the primary
constraints are independent by construction, we pass to the next step and solve the constraint
equations�(1) = 0 with respect to a part of the variables η, as �(1) = 0 → η1 − ϕ1(η2) = 0.
Then we exclude η1 and η̇1 from the equationsF = 0. Thus, we getF = 0 → F̄ A(η2, η̇2) = 0.
Then one has to select independent w.r.t. η̇2 functions F̄ A/1 . At the same time one finds new
constraints F̄ A/2(η2) = 0 and so on (see section 4.1).

We see that the Dirac procedure differs from our reduction procedure. Indeed, as was
mentioned above, in the Dirac procedure one excludes all the derivatives η̇ with the help of the
equations F = 0 from the consistency conditions �̇(1) = 0. Thus, one gets equations for the
Lagrange multipliers and new constraints. Besides, one of the aims of the Dirac procedure is
to maintain the canonical Hamiltonian structure of the equationsF = 0. The possibility of the
Dirac reduction is due to the specific structure of equations (93). Namely, here the consistency
conditions never involve λ̇ and rank ∂F/∂η̇ = [F ] = [η].

Besides, one ought to mention the work [14] where an alternative (to the Dirac procedure)
way of reducing the equations of motion was proposed for theories with actions of the form
S = ∫

[ϕA(η)η̇A − V (η)] dt . One can verify that, in fact, the procedure of that work, in part
(the procedure does not reveal the gauge identities), is similar to our reduction procedure in
the case of the first-order equations (see section 4).

However, the reduction procedure proposed in the present paper is formulated for a wider
class of Lagrangian systems (differential equations). It does not need the introduction of new
variables such as momenta and Lagrange multipliers, and is defined in the framework of the
initial Lagrangian formulation. Moreover, its aim is twofold: to reduce ELE to their canonical
form and to reveal the gauge identities between the ELE equations.

The consideration in the present paper is restricted by finite-dimensional systems.
Its application to field theories (theories with infinite number of degrees of freedom)
demands additional study. We hope to present the corresponding formulation in future
publications. However, in simple cases, one can apply the present reduction procedure with
some natural modifications in the infinite-dimensional case. Consider the Maxwell action
S = − 1

4

∫ FµνFµν dx, Fµν = ∂µAν − ∂νAµ, as a common example of a singular field theory.
The ELE read

F i = ∂S

∂Ai
= ∂νF iν = Äi + ∂iȦ

0 − Ai + ∂iϕ = 0 (94)

F 0 = − ∂S

∂A0
= ∂νFν0 = ϕ̇ + A0 = 0, ϕ = ∂kA

k. (95)

The equation F0 = 0 is a constraint. Following the reduction procedure, we have to consider
the set Fi = 0, Ḟ0 = 0. The Jacobi matrix ∂Fµ/∂Äν has the constant rank 3. We can, for
example, select equations (94) as independent with respect to the derivatives Äi . The equation
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Ḟ0 = 0 is their result. No more constraints appear. Now we exclude A0 and Ȧ0 from (94)
with the help of (95). That creates the equivalence(

F i

F 0

)
=
(
δik − ∂i∂0


0 1

)(
F̄ k

F 0

)
F̄ k = Fk|F 0=0 = �(Ak + ∂kϕ). (96)

Now we discover that the functions F̄ k are dependent, ∂kF̄ k ≡ 0. In our terms that reads, for
example, as the following equivalence:

F̄ 1

F̄ 2

F̄ 3


 =


 1 0 0

0 1 0
−∂−1

3 ∂1 −∂−1
3 ∂2 1




F̄ 1

F̄ 2

0


 . (97)

The equations F̄ 1 = 0, F̄ 2 = 0, F 0 = 0 present one of the canonical forms of the Maxwell
equations. The identity that follows from the presence of the zero in the right column of (97)
reads ∂µFµ = 0 in terms of the initial functionsFµ and implies the invariance of the Maxwell
action under gradient gauge transformations.
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Appendix

Here we present three lemmas which are used in the reduction procedure to justify the
equivalence of equations and LF. In this respect it is useful to recall here the relevant definitions
from section 2.

Two sets of equations, FA(q [l]) = 0 and fα(q [l]) = 0 are equivalent F = 0 ⇐⇒ f = 0
whenever they have the same set of solutions. If two sets of LF FA(q

[l]) and χA(q [l]),
[F ] = [χ], are related by some LO Û and V̂ as F = Ûχ , χ = V̂ F , Û V̂ = 1, then we call
such LF equivalent and denote this fact as F ∼ χ . In this case the corresponding equations
are strongly equivalent.

Lemma 1. Let a set of equations

�µ(x, y
[l]) = 0 Fa(x, y) = 0 x = (xµ) y = (ya) (98)

be given, where � are some LF. And let det ∂Fa/∂yb|x0,y0 	= 0, where the consideration point
(x0, y0) is on shell. Then:

(a) The equations Fa(x, y) = 0 can be solved w.r.t. y as ya = ϕa(x), where ϕa(x) are some
single-valued functions of x in the vicinity of the point x0. In other words, there is the
equivalence

Fa(x, y) ∼ ya − ϕa(x) (99)

which implies strong equivalence between the equations Fa(x, y) = 0 and ya = ϕa(x).
(b) The following equivalence between the LF holds true:(

�µ(x, y
[l])

Fa(x, y)

)
∼
(
�̄µ(x

[l])

ya − ϕa(x)

)
�̄µ = �µ|y[l]=ϕ[l] . (100)
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The first statement is, in fact, the well-known implicit function theorem [13]. Taking into
account (99), we have Fa(x, y) = uab(y

a −ϕa(x)), detu|x0,y0 	= 0. On the other hand one can
write �µ = �̄µ + V̂µa[ya − ϕa(x)], where V̂Aa is a LO. Thus,(

�

F

)
= Û

(
�̄

y − ϕ

)
Û =

(
1 V̂

0 u

)
Û−1 =

(
1 −V̂
0 u−1

)
(101)

and the equivalence (100) is justified.

Lemma 2. Let a set of equations

FA(q, z) = 0 q = (qa) z = (zi) A = 1, . . . ,m

a = 1, . . . , n i = 1, . . . , l

be given. And let the Jacobi matrix ∂FA/∂qa have a constant rank in the vicinity D0 of the
consideration point (q0, z0), which is on shell (FA(q0, z0) = 0),

rank
∂FA

∂qa

∣∣∣∣∣
q,z∈D0

= r. (102)

Then there exists an equivalence

FA ∼ F̄ A =
(
yµ − ϕµ(x, z)

�G(z)

)
qa = (xg, yµ) A = (µ,G) [µ] = r. (103)

We begin the proof with the remark that, due to (102), there exists a division of the indices
A = (µ,G), a = (µ, g), [µ] = r , qa = (xg, yµ), such that

det
∂Fµ

∂yν

∣∣∣∣
q0,z0

	= 0. (104)

Then by virtue of lemma 1 we can write

Fµ = uµνf
ν f ν = yν − ϕν(x, z) detu|q0,z0 	= 0. (105)

Let us present the functions FG in the form FG(x, y, z) = �G(x, z)+�Gµf
µ(x, y, z),where

�G(x, z) = FG|y=ϕ(z,x), such that �G(x0, z0) = 0. Then

FA =
(
Fµ

FG

)
= UABχB χB =

(
f µ

�G

)
U =

(
u 0
� 1

)
detU |q0,z0 	= 0. (106)

By virtue of (102) and (106)

rank
∂χA

∂qa

∣∣∣∣
q,z∈D0

= r. (107)

The Jacobi matrix ∂χA/∂qa has the following structure:

∂χA

∂qa
= ∂(f µ,�G)

∂(yν, xg)
=
(
δµν −∂ϕµ/∂xg
0 ∂�G/∂x

g

)
.

Therefore,

rank
∂�G

∂xg

∣∣∣∣
x∈D0

= 0 �⇒ ∂�G

∂xg

∣∣∣∣
x,z∈D0

= 0. (108)

Equation (108), together with the relation �G(x0, z0) = 0, implies

�G|x,z∈D0 = �G(z) �G(z0) = 0.
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Finally, we may write

FA = UABχB χB =
(
f µ(x, y, z)

�G(z)

)
detU |q0,z0 	= 0 (109)

Thus, the equivalence (103) is justified.
As a result of lemma 2 the following lemma holds true.

Lemma 3. Let a set of equations

FA(q
a) = 0 A = 1, . . . ,m a = 1, . . . , n

be given. And let the Jacobi matrix ∂FA/∂qa have a constant rank in the vicinity D0 of the
consideration point q0 which is on shell (F (q0) = 0),

rank
∂FA

∂qa

∣∣∣∣
q∈D0

= r.

Then there exists an equivalence

FA ∼ F̄ A =
(
yµ − ϕµ(x)

0G

)
A = (µ,G) 0G ≡ 0 ∀G [µ] = r. (110)

The proof of this lemma follows that of lemma 2 if one selects z = z0 there.
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